Critical Role of Magnesium Ions in DNA Polymerase ’s Closing and Active Site Assembly
نویسندگان
چکیده
To dissect the effects of the nucleotide-binding and catalytic metal ions on DNA polymerase mechanisms for DNA repair and synthesis, aside from the chemical reaction, we investigate their roles in the conformational transitions between closed and open states and assembly/disassembly of the active site of polymerase /DNA complexes before and after the chemical reaction of nucleotide incorporation. Using dynamics simulations, we find that closing before chemical reaction requires both divalent metal ions in the active site while opening after the chemical reaction is triggered by release of the catalytic metal ion. The critical closing is stabilized by the interaction of the incoming nucleotide with conserved catalytic residues (Asp190, Asp192, Asp256) and the two functional magnesium ions; without the catalytic ion, other protein residues (Arg180, Arg183, Gly189) coordinate the incomer’s triphosphate group through the nucleotide-binding ion. Because we also note microionic heterogeneity near the active site, Mg2+ and Na+ ions can diffuse into the active site relatively rapidly, we suggest that the binding of the catalytic ion itself is not a rate-limiting conformational or overall step. However, geometric adjustments associated with functional ions and proper positioning in the active site, including subtle but systematic motions of protein side chains (e.g., Arg258), define slow or rate-limiting conformational steps that may guide fidelity mechanisms. These sequential rearrangements are likely sensitively affected when an incorrect nucleotide approaches the active site. Our suggestion that subtle and slow adjustments of the nucleotide-binding and catalytic magnesium ions help guide polymerase selection for the correct nucleotide extends descriptions of polymerase pathways and underscores the importance of the delicate conformational events both before and after the chemical reaction to polymerase efficiency and fidelity mechanisms.
منابع مشابه
Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly.
To dissect the effects of the nucleotide-binding and catalytic metal ions on DNA polymerase mechanisms for DNA repair and synthesis, aside from the chemical reaction, we investigate their roles in the conformational transitions between closed and open states and assembly/disassembly of the active site of polymerase beta/DNA complexes before and after the chemical reaction of nucleotide incorpor...
متن کاملRevealing the role of the product metal in DNA polymerase β catalysis
DNA polymerases catalyze a metal-dependent nucleotidyl transferase reaction during extension of a DNA strand using the complementary strand as a template. The reaction has long been considered to require two magnesium ions. Recently, a third active site magnesium ion was identified in some DNA polymerase product crystallographic structures, but its role is not known. Using quantum mechanical/ m...
متن کاملFidelity discrimination in DNA polymerase beta: differing closing profiles for a mismatched (G:A) versus matched (G:C) base pair.
Understanding fidelity-the faithful replication or repair of DNA by polymerases-requires tracking of the structural and energetic changes involved, including the elusive transient intermediates, for nucleotide incorporation at the template/primer DNA junction. We report, using path sampling simulations and a reaction network model, strikingly different transition states in DNA polymerase beta's...
متن کاملFive checkpoints maintaining the fidelity of transcription by RNA polymerases in structural and energetic details
Transcriptional fidelity, which prevents the misincorporation of incorrect nucleoside monophosphates in RNA, is essential for life. Results from molecular dynamics (MD) simulations of eukaryotic RNA polymerase (RNAP) II and bacterial RNAP with experimental data suggest that fidelity may involve as many as five checkpoints. Using MD simulations, the effects of different active site NTPs in both ...
متن کاملBinding of Mn-deoxyribonucleoside triphosphates to the active site of the DNA polymerase of bacteriophage T7.
Divalent metal ions are crucial as cofactors for a variety of intracellular enzymatic activities. Mg2+, as an example, mediates binding of deoxyribonucleoside 5'-triphosphates followed by their hydrolysis in the active site of DNA polymerase. It is difficult to study the binding of Mg2+ to an active site because Mg2+ is spectroscopically silent and Mg2+ binds with low affinity to the active sit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004